Ultimaker 3

安装和使用手册

免责声明

请仔细阅读并理解本安装和使用手册的内容。如果未阅读本手册,可能会导致人身伤害、打印效果低劣或 Ultimaker 3 受损。务必确保使用 3D 打印机的所有人都知道并理解本手册的内容,而且能充分利用 Ultimaker 3 或 Ultimaker 3 Extended。

设备的装配、搬运、存放、使用或处置*条件或方法不归我们控制,也可能不在我们的知晓范围内。由于此原因和其他原因,对于因装配、搬运、存放、使用或处置本产品*产生的、或以任何方式与之相关的损失、人身伤害、设备损坏或费用,我们概不负责,并明确否定此类责任。

本文档中的信息来自我们认为可靠的来源。但是,这些信息在准确性方面并没有任何明示或隐含的保证。

Ultimaker 3 的预期用途

Ultimaker 3D 打印机专为利用 Ultimaker 热塑性工程塑料实现熔融沉积成型而设计和建造,用于商业/业务环境。Ultimaker 3D 打印机集精确性和速度于一体,是制作概念模型、功能样机和进行小规模生产的理想机器。虽然我们在使用 Ultimaker Cura 复制 3D 模型方面已经达到很高标准,但用户依然有责任确认并验证打印对象的应用是否符合预期用途,对于严格管制领域(医疗器械和航空)的应用,这一点尤为重要。虽然是开放式材料平台,但利用 Ultimaker 认证材料才能取得最佳打印效果,而且,我们已努力确保材料属性与机器设置匹配。

版权所有© 2017 Ultimaker。全球范围内保留所有权利。 本语言版本的手册由制造商验证(原始手册)。 未经 Ultimaker 事先书面许可,本手册的任何部分,包括图片,都不得以打印、复印、微缩拍摄或任何其他方式复制和/或公布。

^{*} 我们遵循 WEEE 指令。

目录

免责声明	2
前言	4
· 认证	5
安全与	
合规	6
1.1 安全信息	7
1.2 危险	8
简介	9
2.1 Ultimaker 3 或 Ultimaker 3 Extended 的主要组件	10
2.2 规格	11
打开包装和安装	12
硬件	12
3.1 拆箱	13
3.2 安装硬件配件	15
首次使用设置	17
4.1 PrintCore 安装	18
4.2 装填材料	19
4.3 安装 Wi-Fi 和固件 4.4 安装 Ultimaker Cura	21
	22
操作 	23
5.1 控件和显示屏 5.2 材料	24 25
5.3 利用 Ultimaker Cura 准备打印成品	26
5.4 开始打印	28
5.5 取下打印成品	30
5.6 卸下支撑材料	31
5.7 更换材料和 PrintCore	33
5.8 校准	34
维护	37
6.1 更新固件	38
6.2 材料存放和搬运 6.3 维护计划	39 40
6.4 清洁打印机	41
6.5 轴润滑	44
6.6 检查轴隙	45
6.7 检查短皮带的张力	46
6.8 检查打印头前风扇中是否有残留物	47
6.9 检查硅胶喷嘴盖的质量 6.10 润滑 Z 电机的导向螺丝	48
6.10 润滑 Z 电机时导问繁丝 6.11 清洁 PrintCore	49 50
6.12 清洁进料装置并更换鲍登管	53
故障排除	56
7.1 错误消息	57
7.2 PrintCore 故障排除	58
7.3 打印质量问题	59

前言

本文档是 Ultimaker 3 或 Ultimaker 3 Extended 的安装和使用手册。本手册各章节介绍了如何安装和使用 3D 打印机。

本手册包含关于设备安全、安装和使用的重要信息。请仔细阅读所有信息,并遵循手册中的说明和准则。这样可以确保实现优质打印效果,预防可能发生的事故和人身伤害。

务必让使用 Ultimaker 3 或 Ultimaker 3 Extended 的每个人都可以阅读本手册。

我们已竭尽全力保证本手册尽可能准确和完整。本手册信息应该正确,但并不详尽,仅供参考。如果您发现任何错误或遗漏,请告知我们,我们会进行修改。我们便能改善为您提供的文件和服务。

认证

Ultimaker RYK-WUBA171GN

This device may not cause harmful interference, and this device must accept any interference received, including interference that may cause undesired operation.

UL 60950-1 CSA C22.2 No. 60950-1

1. 安全与 合规

安全使用 Ultimaker 3 或 Ultimaker 3 Extended 非常重要。本章介绍了相关的安全和 危险信息。请仔细阅读所有信息,预防可能发生 的事故和人身伤害。

1.1 安全信息

本手册包含警告和安全提示。

提供有助于完成任务或避免问题的附加信息。

警告如果不遵循安全说明可能会发生的材料损坏或人身伤害情况。

一般安全信息

Ultimaker 3 或 Ultimaker 3 定xtended 运行期间,千万不要触摸其内部。务必使用正面的按钮或背面的电源开关控制打印机。触摸 Ultimaker 3 或 Ultimaker 3 Extended 内部之前,需要让它冷却 5 分钟。

未经制造商授权,请勿对 Ultimaker 3 或 Ultimaker 3 Extended 作出任何更改或调整。

请勿在 Ultimaker 3 或 Ultimaker 3 Extended 中存放物品。

除非安全负责人提供相关监督或指导,有体力和/或精神障碍的人,或缺乏经验和知识的人不得使用 Ultimaker 3 或 Ultimaker 3 Extended。

使用打印机期间,对孩子的监督不应间断。

蓄意无线电干扰

此设备不会造成有害干扰,但必须接受收到的任何干扰,包括可能造成非预期运行的干扰。

1.2 危险

电磁兼容性 (EMC)

此设备已经过测试,符合 FCC 规则第 15 部分对 A 类数字设备的限制。当设备在商业环境中工作时,这些限制旨在提供合理的有害干扰防范。此设备可以产生、使用和辐射射频能量,如果不按说明书安装和使用,可能会对无线电通信造成有害干扰。在住宅区使用此设备可能会造成有害干扰,在此情况下,用户需要自费校正干扰。

电气安全

Ultimaker 3 已按照低电压指令 IEC 60950-1 进行了测试。Ultimaker 3 必须与明纬电源 GST220AX 及其提供的电源线结合使用。这种结合可以在短路、过载、过压和过温的情况下保证安全。请务必使用已接地的市电插座。确保建筑物安装具有专用的过电流和短路保护装置。欲了解更多信息,请访问我们的网站,查看 CB 报告。

执行维护或修改之前,务必拔掉打印机的插头。

机械安全

Ultimaker 3 配有活动部件。传动皮带不应对用户造成伤害。打印平台板的力量非常大,足以造成某种伤害,因此,在设备运行期间,请保证双手远离打印平台板的范围。

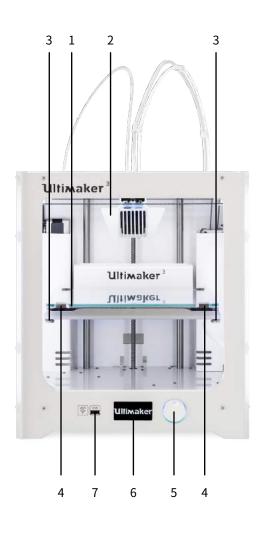
执行维护或修改之前,务必拔掉打印机的插头。

烧伤风险

此设备存在潜在的烧伤风险:打印头的温度可高达 280°C,加热床的温度可达到 100°C。请勿裸手触摸这两个装置。

执行维护或修改之前,务必让打印机冷却30分钟。

健康和安全


Ultimaker 3 设计采用 Ultimaker 耗材。如果保持建议温度和设置,这些材料就可以安全打印。我们建议在通风良好的环境下使用各种 Ultimaker 材料打印。请查看每种特定材料的安全数据表 (SDS),了解更多信息。

使用 Ultimaker 3D 打印机处理时,非 Ultimaker 材料会释放 VOC (挥发性有机化合物)(不在保修范围内)。这种物质会使人产生头痛、疲劳、头晕、惶惑、困倦、不舒服、注意力难以集中和中毒感。建议使用通风柜。查看这些材料的 <u>SDS</u>,了解更多信息。

2. 简介

认识 Ultimaker 3,了解 这种 3D 打印机的潜力。

2.1 Ultimaker 3 或 Ultimaker 3 Extended 的主要组件

- 1. 打印平台板
- 2. 打印头
- 3. 滚花螺母
- 4. 打印平台板夹具
- 5. 按钮/旋钮
- 6. 显示屏
- 7. USB 端口
- 8. 进料装置 2

- 9. 鲍登管
- 10. 进料装置 1
- 11. 以太网端口
- 12. 带 NFC 电缆的双线轴架
- 13. 电缆盖
- 14. 电源插孔和电缆
- 15. 电源开关
- 上图所示型号为 Ultimaker 3。Ultimaker 3 Extended 的主要组件与它相同,位置也完全相同。两种打印机之间唯一的区 别是外罩的高度。参见规格,了解二者的不同特征。

2.2 规格

打印机和打印属性

技术 熔融沉积成型 (FDM)

打印头 双挤出打印头,带有自动喷嘴提升系统和可交换的 PrintCore

成形空间体积 Ultimaker 3 Ultimaker 3 Extended

左喷嘴:215 x 215 x 200 mm215 x 215 x 300 mm右喷嘴:215 x 215 x 200 mm215 x 215 x 300 mm双材料:197 x 215 x 200 mm197 x 215 x 300 mm

耗材直径 2.85 mm

层分辨率 0.25 mm 喷嘴:150 - 60 微米

0.40 mm 喷嘴:200 - 20 微米 0.80 mm 喷嘴:600 - 20 微米

XYZ 精度12.5、12.5、2.5 微米打印头移动速度30 - 300 mm/s成形速度小于 24 mm³/s打印平台板加热玻璃打印平台板

打印平台板温度 20 − 100 °C **打印平台板调平** 主动调平

支撑材料 尼龙、PLA、ABS、CPE、CPE+、PC、TPU 95A、PP、PVA、Breakaway

喷嘴直径 0.25 mm、0.40 mm、0.80 mm

喷嘴温度 80 - 280 °C **喷嘴加热时间** 小于 2 分钟

打印平台板加热时间 小于 4 分钟 (20 - 60 °C 以上)

工作噪音 50 dBA

材料识别使用 NFC 扫描仪识别材料连接Wi-Fi、LAN、USB 端口

监控 现场摄像头

物理尺寸

 C寸
 Ultimaker 3
 Ultimaker 3 Extended

 342 x 380 x 389 mm
 342 x 380 x 489 mm

 R寸
 342 x 505 x 588 mm
 342 x 505 x 688 mm

(含鲍登管和线轴架)

净重10,6 kg11.3 kg装运重量15,5 kg16,8 kg装运箱尺寸400 x 395 x 590400 x 395 x 690

供电要求

输入 100 – 240V

4A,50 - 60Hz 最大 221 W 24 V DC,9.2 A

环境条件

输出

工作环境温度 15 - 32 °C, 相对湿度 10 - 90% 无冷凝

参考材料规格,了解最佳工作条件

非工作温度 0 − 32 °C

软件

随机提供的软件 Ultimaker Cura, 我们免费的打印准备软件

支持的操作系统MacOS、Windows 和 Linux文件类型STL、OBJ、X3D 和 3MF

G和GCODE

BMP、GIF、JPG和PNG

3. 打开包装和安装硬件

小心打开 Ultimaker 3 或 Ultimaker 3 Extended 的包装,并按本章说明安装硬件。

3.1 拆箱

Ultimaker 3采用可重复使用的耐用包装,专门用于保护 Ultimaker 3。

打开包装

正确按照以下步骤打开 Ultimaker 3 的包装。

- 1. 从纸箱中取出 Ultimaker 3。
- 2. 打开带扣,松开皮带。
- 3. 卸下顶部的泡沫塑料包装,里面有两个熔丝线轴和工厂测试打印件。
- 4. 取出配件箱。
- 5. 卸下 Ultimaker 3 正面底部的泡沫塑料。
- 6. 取出 Ultimaker 3, 卸下底部泡沫塑料,将 Ultimaker 3 放在平面上。
- 7. 剪开捆绑打印头的束线带。
- 8. 撕掉打印头上的胶带。

配件箱内件

Ultimaker 3 提供 PLA (350 g) 和 PVA (350 g) 线轴、测试打印件、快速入门指南以及若干硬件配件。继续下一步之前,请检查配件箱中是否包含所有配件。

- 1. 电源电缆(在打印机下方)
- 2. 电源适配器
- 3. 以太网电缆
- 4. 带 NFC 电缆的线轴架
- 5. 材料导引装置
- 6. 电缆盖
- 7. 六角螺丝刀
- 8. PrintCore AA 0.4 和 PrintCore BB 0.4

- 9. 玻璃板
- 10. 校准卡
- 11. U盘
- 12. XY 校准纸
- 13. 胶棒
- 14. Magnalube (用于 Z 电机的导向螺丝)
- 15. 机器润滑油(用于 X/Y/Z 轴)

3.2 安装硬件配件

放置并连接 NFC 线轴架

- 1. 轻轻地将打印机左侧向下放倒放置。
- 2. 将线轴架插入背板。先将顶部插入小孔,然后向下按,直到扣在正确的位置。
- 3. 将 NFC 电缆连接至 NFC 插口。连接器的平面背向底板。
- 4. 引导 NFC 电缆穿过背板上的凹槽。
- i

如果是 Ultimaker 3, 应该向上卷起剩余电缆紧靠背板, 以便用电缆盖正确扣住。Ultimaker 3 Extended 无需进行此操作。

- 5. 将电缆盖插入背板,以固定电缆。
- 6. 轻轻地将 Ultimaker 3 直立起来。

放置玻璃板

- 1. 打开打印平台板正面的两个夹具。
- 2. 轻轻地将玻璃板滑到打印平台板上,确保玻璃板扣在后面的打印平台板夹具上。
- 3. 闭合正面的两个打印平台板夹具,固定玻璃板。

打印平台板上升时,如果打印平台板夹具未闭合,可能会损坏 Ultimaker 3。

连接电源

- 1. 将电源电缆连接至电源适配器。
- 2. 将电源电缆插入墙壁插座。
- 3. 将电源适配器另一端连接至 Ultimaker 3。连接器需要平面朝下。将电缆紧紧地推入端口之前,必须拉回滑动机制。当电缆线接入打印机时,就可以释放滑动机制,将其锁定。
- i

Ultimaker 3 的适用电流范围为 230 V AC 50 Hz 或 110 V AC 60 Hz。应该使用已接地的墙壁插座,以防止过电流,建筑物应该具有专用的短路

4. 首次使用设置

配件安装完毕后,必须进行打印机首次使用设置。本章将为您介绍 PrintCore 安装、装填材料、设置 Wi-Fi、更新固件和安装 Ultimaker Cura 软件的步骤。

4.1 PrintCore 安装

要执行设置步骤,请用背面的电源开关打开打印机。显示屏上将出现欢迎设置。旋转按钮,浏览菜单,然后按下按钮确认您的选择。

PrintCore

Ultimaker 3 的打印头上有两个 PrintCore, 二者可互换。

PrintCore 有两种类型:

- · AA型:用于打印构建材料和 Ultimaker Breakaway 材料。
- · BB型:用于打印水溶性支撑材料。

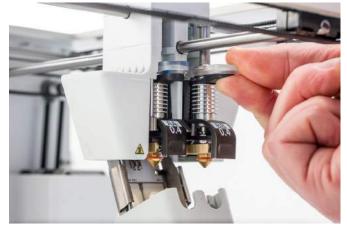
每台 Ultimaker 3 配备两个 PrintCore AA 0.4 (一个已经安装在了打印头狭槽 1 中) 和一个 PrintCore BB 0.4。这意味着,可以利用两种构建材料或一种构建材料配支撑材料来打印。

PrintCore 中包含打印信息,因此,打印机可以始终了解安装了哪种 PrintCore,以及此 PrintCore 使用哪种材料打印。

安装第二个 PrintCore

在欢迎设置中必须安装第二个 PrintCore。要安装第二个 PrintCore,请按照 Ultimaker 3 显示屏上的步骤操作:

- 1. 打开打印头风扇架并按下"继续"。
- 2. Ultimaker 3 此时将自动检测打印头狭槽 1 中安装的 PrintCore (AA)。确认继续。
- 3. 通过挤压 PrintCore 上的杠杆并将其滑入打印头,在打印头狭槽 2 中安装 BB PrintCore。


请勿用手触摸 PrintCore 背面的芯片。

安装时,确保 PrintCore 保持完全直立,这样,它就可以顺畅滑入打印头。

- 4. Ultimaker 3 此时会自动检测打印头狭槽 2 中安装的 PrintCore (BB)。确认继续。
- 5. 关闭打印头风扇架,确认继续执行设置步骤。

4.2 装填材料

开始使用 Ultimaker 3 打印之前,需要在打印机中装填材料。第一次使用时,建议使用 Ultimaker 3 随附的 PLA 和 PVA 线轴。

装填材料2

首先要装填材料 2,因为此材料必须紧靠打印机背面放置。采用以下步骤装填材料。

- 1. 将带材料 2 (PVA) 的线轴放置在线轴架上。确保材料沿顺时针方向放置,这样就可以从底部进入进料装置 2。
- 2. 等待 Ultimaker 3 检测到材料。
- 3. 将材料末端插入进料装置 2 并轻轻推动,直到材料被进料装置卡住且在鲍登管中可以看见。选择"确认"以继续。
- i

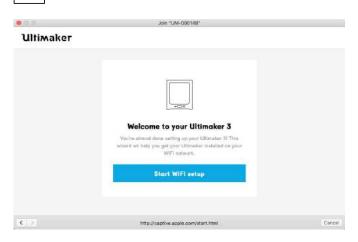
拉直一点材料末端,以便它轻松进入进料装置。

- 4. 等待 Ultimaker 3 加热 PrintCore 2,并将材料进给到打印头。
- 5. 当新材料从打印头挤出时,进行确认。
- 6. 稍等一会儿,让 PrintCore 2 冷却。

装填材料1

首先要将材料1放置在材料导引装置上,然后再将其放置到线轴架上,以避免两种材料在打印期间缠结。采用以下步骤装填材料1。

- 1. 拿着材料导引装置,使其外面部分朝向您。
- 2. 将带材料 1 (PLA) 的材料线轴放置在材料导引装置上,保持材料沿逆时针方向缠绕。
- 3. 引导材料末端穿过材料导引装置上的小孔。完成后,选择继续。
- 4. 将装填好材料1的材料导引装置放置在材料2后的线轴架上,等待它被打印机检测到。
- 5. 将材料末端插入进料装置1并轻轻推动,直到材料被进料装置卡住且在鲍登管中可以看见。选择"确认"以继续。
- 6. 等待 Ultimaker 3 加热 PrintCore 1,并将材料进给到打印头。
- 7. 当新材料从打印头挤出时,进行确认。
- 8. 稍等一会儿,让 PrintCore 1 冷却。



4.3 安装 Wi-Fi 和固件

Ultimaker 3 支持通过网络进行无线打印。因此,下一步是将 Ultimaker 3 连接至网络。您需要一台计算机或智能手机才能完成此操作。

设置 Wi-Fi

- 1. 等待 Ultimaker 3 创建 Wi-Fi 热点。这一步可能需要一分钟。
- 2. 移到计算机或智能手机,将其连接至打印机的无线网络。网络名称显示在 Ultimaker 3 的显示屏上。
- 3. 计算机显示屏上将出现一个弹出窗口。按照步骤将 Ultimaker 3 连接至本地 Wi-Fi 网络。完成这些步骤后,弹出窗口将消失。
- 如果未显示弹出窗口,请打开浏览器并浏览到该浏览器未访问过的网站。

- 4. 返回 Ultimaker 3,继续进行首次使用设置。
- 在某些网络环境中,Ultimaker 3 可能会遇到无线连接困难。当出现这种情况时,请换一台计算机或智能手机重新运行Wi-Fi 设置。
- 如果跳过此步骤,可以始终通过转到"系统 → 网络 → 运行 WiFi 设置",在完成欢迎设置后重新进行 Wi-Fi 设置。

更新固件

作为最后一步,Ultimaker 3 将检查是否安装了最新固件。如果没有,它将从网络获取最新固件并安装。这一步需要几分钟时间。

4.4 安装 Ultimaker Cura

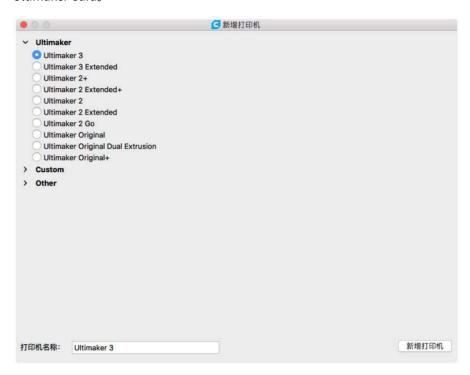
针对 Ultimaker 3, 建议使用我们的免费软件 Ultimaker Cura 准备 3D 打印模型。对新手来说,很轻松就能获得很好的效果。对专业人士来说,有超过 200 个设置可供调整以满足您的需求。

针对 Ultimaker 3,必须使用 Ultimaker Cura 2.3 或更高版本。建议始终使用最新的稳定版本。

系统要求

接受的平台

- · Windows Vista 或更高版本(64 位)
- · Mac OSX 10.7 或更高版本(64 位)
- · Linux Ubuntu 14.04、Fedora 23、OpenSuse 13.2、ArchLinux 或更高版本(64位)


Cura 2.3 及更高版本才支持 Windows 32 位。

系统要求

- · OpenGL 2 兼容的显卡芯片
- · Intel Core 2 或 AMD Athlon 64 或更新版本
- · 最少 4Gb 内存(建议 8Gb 或更多)

安装

Ultimaker Cura 软件可在 www.ultimaker.com/software. 中找到。下载后, 打开安装程序, 并运行安装向导完成安装。首次打开 Ultimaker Cura 时, 将要求您选择 3D 打印机, 即 Ultimaker 3 或 Ultimaker 3 Extended。不需要其他配置, 即可直接开始使用 Ultimaker Cura。

5. 操作

安装后,就该开始用 Ultimaker 3 打印了。本章将介绍控件和显示屏、材料、Ultimaker Cura、开始打印、取下打印成品和支撑材料、更换材料和PrintCore 以及校准。

5.1 控件和显示屏

控件

通过背面的电源开关打开 Ultimaker 3 后,即可使用显示屏右侧的按钮/旋钮轻松控制打印机。使用这些控件可执行以下操作:

- · 旋钮用于滚动菜单或选择选项。
- · 按钮用于确认选择或操作。

按下按钮时,将听到"哔哔"声,表示确认操作。按钮闪烁意味着Ultimaker 3 正等待用户输入。

显示屏和菜单

Ultimaker 3 正面的显示屏显示关于设置和使用 Ultimaker 3 的所有必要信息。首次打开 Ultimaker 3 时,系统将引导您完成欢迎设置。首次使用后再打开 Ultimaker 3 时,总会先在显示屏上看到 Ultimaker 徽标,然后出现主菜单。主菜单包括三个选项:打印、材料/PrintCore 和系统。

打印

使用U盘时,通过"打印"菜单可以选择打印文件。比如,打印时,此菜单还可以微调打印文件,以及更改设置。

材料/PrintCore

利用"材料/PrintCore"菜单,可以更换、装填和卸除材料及PrintCore。此外,您可以移动材料,并手动设置每个PrintCore的温度。

系统

"系统"菜单包括多种选项,可以控制网络、打印平台板、打印头和框架灯,以及执行维护和诊断测试。菜单中的这些选项在对打印机执行维护和故障排除时特别有用。

5.2 材料

材料兼容性

正如第 4.1 章 "PrintCore 安装" 所述, Ultimaker 3 配备两个构建材料 PrintCore (AA) 和一个水溶性支撑材料 PrintCore (BB)。AA PrintCore 可用于打印 PLA、ABS、CPE、CPE+、尼龙、PC、TPU 95A、PP 和 Breakaway。BB PrintCore 可用于打印 PVA。

该兼容性基于使用 PrintCore 0.4 的单挤出打印成品。如果使用 PrintCore 0.25 或 0.8,则兼容性稍有不同。下面将为您概述哪种材 料可与哪种 PrintCore 配合使用。

	PLA	ABS	Nylon	СРЕ	CPE+	PC	TPU 95A	PP	PVA	Break- away
Print core 0.25	~	~	~	~	×	(i)	<u>(i)</u>	~	×	×
Print core 0.4	~	~	~	~	~	~	~	✓	~	~
Print core 0.8	~	~	~	~	<u>(i)</u>	(i)	✓	~	~	×
✓ Officially supported		① Experimental		X No	ot supporte	d				

[✓] Officially supported Experimental

欲了解可能的双挤出材料组合概述,请查阅下表。

	PLA	ABS	Nylon	CPE	CPE+	PC	TPU 95A	PP	PVA	Break- away
PLA	✓	×	×	×	×	×	×	×	~	~
ABS		~	×	×	×	×	(i)	×	(i)	~
Nylon			①	×	×	×	①	×	✓	~
СРЕ				~	×	×	×	×	~	~
CPE+					(i)	×	×	×	(i)	~
PC						①	①	×	×	①
TPU 95A							<u>(i)</u>	×	(i)	<u>(i)</u>
PP								1)	×	×
PVA									×	×
Breakaway										×

[✓] Officially supported

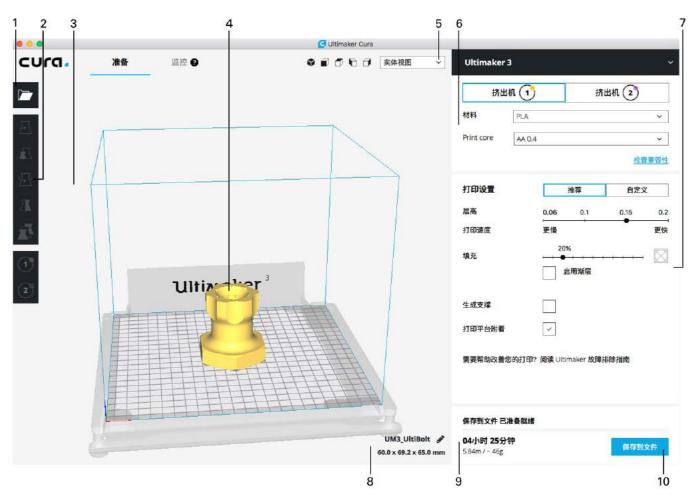
虽然 Ultimaker 3 采用的是开放式材料系统, 我们还是建议在打印机上使用 Ultimaker 材料。所有 Ultimaker 材料均已经过专门 测试,并在 Ultimaker Cura 中拥有优化的配置文件,可确保最佳打印效果。使用 Ultimaker 材料还可以让您受益于 NFC 检测系 统。Ultimaker 3 将自动识别 Ultimaker 线轴,该信息还可直接传输至 Ultimaker Cura (已联网)。这样便可在打印机和 Ultimaker Cura 软件之间实现无缝连接。

打印设置

为获得最佳效果,每种材料都需要不同的设置。如果使用 Ultimaker Cura 准备模型,在选择了正确的 PrintCore 和材料的情况下,这 些设置将自动正确设定。

对于 Ultimaker 3 支持的所有材料,在开始打印前,还建议在玻璃板上涂一层薄薄的胶(使用配件箱中的胶棒)或贴上一张贴纸。这样 可确保打印成品很好地附着在玻璃板上。

欲了解每种材料使用哪种设置和粘着方法的详细说明,请查阅 Ultimaker网站上的材料手册。

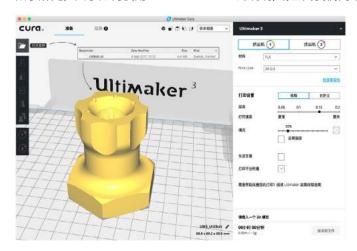

Experimental

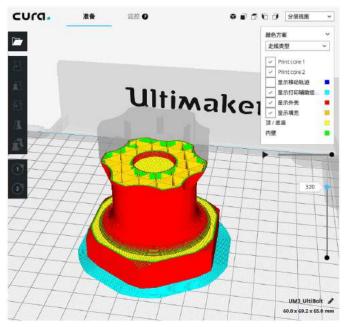
X Not supported

5.3 利用 Ultimaker Cura 准备打印成品

界面

在 Ultimaker Cura 中添加 Ultimaker 3 后,将显示主界面。以下是界面概览。


- 1. 打开文件
- 2. 调整工具
- 3. 非打印区域
- 4. 3D 模型
- 5. 视图模式
- 6. 打印机、PrintCore 和材料配置
- 7. 打印设置(推荐模式)
- 8. 模型信息
- 9. 打印作业信息(打印时间和材料使用情况)
- 10. 保存到文件、SD 卡或通过网络打印


分割模型

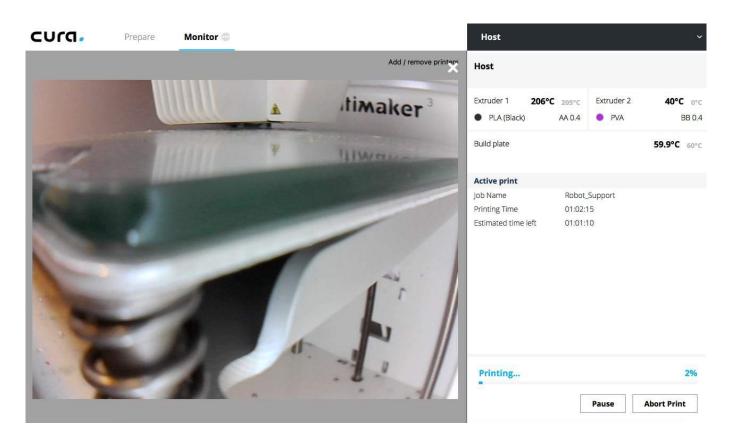
要在 Ultimaker Cura 中分割模型,请采用如下步骤:

- 1. 单击"打开文件"文件夹图标来载入(一个或多个)模型。
- 2. 在侧边栏(屏幕右侧)中,检查 PrintCore 和材料是否正确。
- 3. 根据需要,使用调整工具定位、缩放和旋转打印模型。
- 4. 在"打印设置"下选择所需设置(层高/打印速度、填充、支撑和打印平台附着)。
- 利用支撑材料打印时,可以选择您想用于打印支撑结构的挤出机。这样可以在 Ultimaker 3 上利用 PVA 或 Breakaway 支撑打印模型。
- 5. 要查看选定设置的效果,可将视图模式从"实体视图"更改为"分层视图"。
- 6. 在右下角,可根据打印方法选择"保存到文件"、"保存到 USB"或"通过网络打印"。
- 如果创建的是双色打印成品,则必须先为模型分配材料颜色并合并模型,才能完成分割。

欲了解更多关于如何使用 Ultimaker Cura 的说明,请查阅我们网站上的 Ultimaker Cura 手册。

5.4 开始打印

利用 Cura Connect 打印


Ultimaker 3 可以通过网络 (Wi-Fi 或以太网) 打印。当 Ultimaker 3 和计算机连接至相同网络时,即可在 Ultimaker Cura 中使用 Cura Connect 完成此操作。

要使用 Cura Connect, Ultimaker 3 应该配备固件版本 4.0 或更高版本。

要通过 Cura Connect 开始打印,请采用以下步骤:

- 1. 将 Ultimaker 3 通过 Wi-Fi 或以太网连接至网络(如果未连接):
 - · Wi-Fi:转到"系统 → 网络 → 运行 WiFi 设置",然后按照显示屏上的步骤操作,即可安装 Wi-Fi。
 - · 以太网:将网络电缆连接至 Ultimaker 3 背面的插口。
- 2. 在网络菜单中启用 Wi-Fi 或以太网。
- 3. 在 Ultimaker Cura 中,转到"设置 → 打印机 → 管理打印机"。
- 4. 单击"通过网络连接"按钮。
- 5. 从显示的打印机列表选择您的 Ultimaker,然后单击"连接"。该打印机现在是 Cura Connect 主机。
- 在 Ultimaker 中分割 3D 模型。
- 7. 按下"通过网络打印"开始打印。
- 打印运行后,您就可以通过打开 Ultimaker Cura 屏幕顶部的"监控"选项卡进行监控。利用此功能,可以远程查看打印进程并控制 Ultimaker 3。.
- 当发送多个打印作业时,Cura Connect 会自动将这些作业添加到队列中。 请查阅 <u>Cura Connect 手册</u> 了解所有功能的详细说明。

利用 USB 打印

无法通过网络打印时, 3D 打印文件依然可以通过 U 盘传输至 Ultimaker 3。

- 1. 将 U 盘插入计算机。
- 2. 在 Ultimaker 中分割 3D 模型。确保 Ultimaker Cura 中的 PrintCore 和材料配置与 Ultimaker 3 上的配置相匹配。
- 3. 通过"保存到可移动磁盘"按钮将打印文件 (.gcode) 保存到 U 盘。
- 4. 弹出 Ultimaker Cura 中的 U 盘,并将其从计算机上拔掉。
- 5. 将 U 盘插入 Ultimaker 3 上的 USB 端口。
- 6. 转到"打印"菜单,选择要打印的文件。

Ultimaker 3 应用程序

除了利用 Ultimaker Cura 或 U 盘之外,Ultimaker 3 还允许您利用 Ultimaker 3 应用程序通过智能手机或平板电脑直接打印。Ultimaker 3 应用程序可从 App Store 或 Google Play 下载。欲了解更多信息,请访问 www.ultimaker.com/en/products/ultimaker-3-app。

要通过 Ultimaker 3 应用程序打印模型,请按照以下步骤操作:

1. 从列表中选择模型以连接至 Ultimaker 3,或使用 IP 地址手动添加打印机。

如果是首次连接打印机,需要在打印机上对连接授权。

- i
- 2. 选择"开始新打印"。
- 3. 从您的设备或 YouMagine 载入一个 3D 模型,或打印 Ultimaker Robot。
- 4. 使用 3D 预览功能检查打印平台板上的模型,然后选择"打印"。
- 5. 检查材料配置,然后选择"下一步"。
- 6. 选择打印质量配置文件,选择支撑材料,并切换选择 Brim 功能。
- 7. 选择"分割"按钮以分割模型。
- 8. 选择"开始打印"以开始打印。

5.5 取下打印成品

3D 打印成品完成后,必须从打印平台板上将其取下。有多种方法可供使用,具体取决于打印成品附着于打印平台板的方式。

等待冷却

如果在玻璃板上直接打印而没有使用胶粘剂,而且打印平台板也没有调得过紧,打印成品冷却后可轻松取下。只要打印后让打印平台板和打印成品冷却即可。材料将随着自身的冷却而收缩,您可以从打印平台板上轻松取下打印成品。

使用抹刀

如果冷却后也无法从打印平台板上取下打印成品,可以使用抹刀取下打印成品。将抹刀放置在打印成品下方,稍微用力即可取下打印成品。

请从打印机中取出玻璃板,以避免损坏打印平台板夹具。

使用水

如果上述方法都不行,可以用水取下打印成品。从Ultimaker 3 中取出玻璃板和打印成品。如果玻璃板还是热的,小心不要烫伤手指。用冷自来水冲玻璃板背面以快速冷却。打印材料的收缩程度将比正常冷却时更大。冷却后,打印成品便可脱离。

如果玻璃板上使用了胶,请用温水冲玻璃板的打印面,以使胶溶解。胶溶解后,就能更容易地取下打印成品。如果使用了 PVA,请将玻璃板和打印成品浸入水中以溶解 PVA。这样可以更容易地取下打印成品。

5.6 卸下支撑材料

溶解 PVA 支撑

可通过将 PVA 溶解于水来卸下 PVA 支撑结构。这需要数小时,之后不会留下任何痕迹。

1. 将打印成品浸入水中

将含 PVA 的打印成品放入水中后, PVA 会慢慢溶解。使用以下方法可加快这个过程:

- · 温水。温水可以缩短溶解时间。当使用 PLA 构建材料时,水温不得超过 35 ℃,否则 PLA 可能受到不良影响。切勿使用超过 50 ℃ 的水,因为这会增加烫伤风险。
- · 搅动。利用搅动/流动的水,可以显著缩短溶解时间。水流动时,PVA将溶解得更快(有时不到三小时,具体取决于所用的支撑材料量)。
- · 钳子。您还可以将打印成品浸入水中大约 10 分钟加快 PVA 溶解速度,然后使用钳子卸下大部分支撑。再将打印成品放回水中时,只需溶解剩余的 PVA 即可。PVA 支撑完全溶解后,可以用水冲洗打印成品,去掉任何多余的 PVA。

2. 用水冲洗

PVA 支撑完全溶解后,可以用水冲洗打印成品,去掉任何多余的 PVA。

3. 让打印成品晾干

让打印成品完全晾干,最好对构建材料采取额外的后处理措施。

4. 处理废水

PVA 是可生物降解材料,多数情况下用过的水很容易处理。但是,我们建议您查阅本地法规获得更简明的指导。如果废水配水网连接至废水处理厂,可以直接通过下水道处理。处理完后,可让水龙头放大约 30 秒热水,冲掉下水道中任何残留的饱和 PVA 水,以免造成长期堵塞问题。

同样的水可以连续处理多件打印成品,不过这样会延长溶解时间。经过重复使用,之前溶解过 PVA 的水会变饱和,因此,要取得最快的效果,建议使用新水。

卸下 Breakaway 支撑

使用 Ultimaker Breakaway 作为支撑材料的打印成品需要采用后处理措施来卸下支撑结构。这可以通过将支撑结构与构建材料脱离来实现。

1. 撕掉内部支撑结构

首先用夹钳去除支撑结构壁。这样可以快速撕掉绝大部分内部支撑结构。

2. 从构建材料上拉下 Breakaway 支撑

撕掉大部分支撑结构后,剩余部分可以从构建材料上拉下。使用剪钳夹住 Breakaway 支撑的一角,尝试小心地伸到下面,然后向上卷。对其他各角重复此步骤,以使支撑的每个角都脱离模型。之后,从模型上拉下 Breakaway 支撑。

3. 从模型上剥开最后的残留部分

有时,从构建材料上拉下 Breakaway 支撑后,支撑材料的最后一层还留在上面。如果出现这种情况,请使用剪钳从松弛的边缘将其剥开。模型上的任何残留部分都可以用镊子去除。

5.7 更换材料和 PrintCore

更换材料

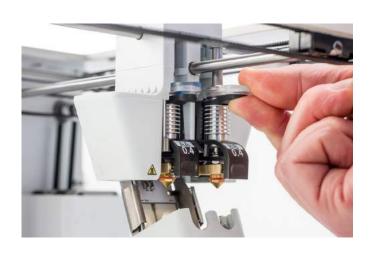
利用菜单程序,可以轻松更换 Ultimaker 3上的材料。除更换材料外,也可以选择仅装填或卸除材料。

- i
- 插入材料之前,确保已安装兼容的 PrintCore。
- 1. 转到菜单"材料/PrintCore → 材料 [x] → 更换"。
- 2. 等待 PrintCore 加热和调换材料。
- 3. 从进料装置和线轴架上卸下材料。
- 4. 将新材料放置在线轴架上,等待 Ultimaker 3 检测。
- i
- 使用非 Ultimaker 材料时,可以手动选择。
- 5. 将材料插入进料装置并轻轻推动,直到进料装置卡住材料。
- 6. 按下 Ultimaker 3 正面的按钮, 确认已将材料插入进料装置。
- 7. 材料被进给后,等待它从打印头挤出来,然后按下按钮。

更换 PrintCore

利用菜单程序,可以轻松更换 Ultimaker 3 上的 PrintCore。除更换 PrintCore 外,也可以选择仅装填或卸除 PrintCore。

- 1. 转到菜单"材料/PrintCore → PrintCore [x] → 更换"。
- 2. 等待 PrintCore 加热、调换材料并再次冷却。
- 3. 打开打印头风扇架。
- 4. 通过挤压杠杆并从打印头滑出,小心地卸下 PrintCore。



请勿用手触摸 PrintCore 背面的芯片。

- 5. 将新 PrintCore 插入打印头。

卸下或安装时,确保 PrintCore 保持完全直立,这样,它就可以顺畅滑出/滑入打印头。

- 6. 关闭打印头风扇架。
- 7. 等待 Ultimaker 3 将材料装填至 PrintCore 并再次冷却。
- 无法同时更换材料和 PrintCore。如果两者都要更换,必须先卸下材料,再更换 PrintCore,之后再装填新材料。

5.8 校准

打印平台板调平

使用Ultimaker 3 时,需要定期校准打印平台板,以确保打印成品很好地粘着于打印平台板。如果喷嘴和打印平台板之间的距离过大,打印成品将不会正确粘着在玻璃板上。另一方面,如果喷嘴太靠近打印平台板,会妨碍材料从喷嘴挤出。

Ultimaker 3 的打印平台板有两种校准方式:主动调平和手动调平。主动调平是首选,因为这种方式不会出现人为误差。

想要校准打印平台板时,需确保喷嘴上没有塑料,玻璃板绝对清洁,以免造成调平不准。

主动调平

在主动调平期间,Ultimaker 3 将在多个位置测量喷嘴尖端与打印平台板之间的距离。这些位置存储在打印机中,以便在打印成品挤出前几层时弥补打印平台板的水平误差。此操作通过在打印期间稍微上下移动打印平台板完成。

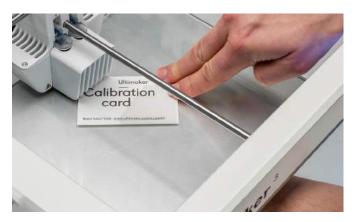
开始主动调平:

- 1. 转到"系统 → 打印平台板 → 主动调平"。
- 2. 等待打印机结束调平。这一过程需要几分钟时间。

主动调平程序期间,请勿触摸 Ultimaker 3。因为这样会影响衡量结果。

手动调平

如果打印平台板的水平状态偏差太多(主动调平无法弥补),可以采用手动调平。


- 1. 转到"系统 → 打印平台板 → 手动调平"。
- 2. 等待 Ultimaker 3 执行归位程序, 当打印头位于打印平台板背面中央位置时再继续。
- 3. 旋转正面的按钮,直到第一个喷嘴和打印平台板相距大约 1 mm。确保喷嘴靠近打印平台板,但不会触碰。
- 4. 调整正面右侧和左侧的滚花螺母,在正面大致调平打印平台板。喷嘴和打印平台板之间也应该保持大约1 mm 的距离。
- 5. 当打印头位于打印平台板背面中央位置时,将校准卡放置在喷嘴和平台板之间。

利用校准卡微调期间,请勿按压打印平台板。因为这样会造成调平不准。

- 6. 调整中后部的滚花螺母,直到移动校准卡时感到轻微的摩擦。
- 7. 按下"继续"。打印头移到第二点。
- 8. 重复第5步"放置校准卡"和第6步"调整打印平台板"。
- 9. 再次按下"继续"。打印头移到第三点。
- 10. 重复第5步"放置校准卡"和第6步"调整打印平台板"。

利用第一个喷嘴校准好打印平台板之后,第二个喷嘴也需要对齐,以确保两个喷嘴的高度设置正确。为此,只需利用校准卡设置正确的高度即可。

- 1. 将校准卡放置在第二个喷嘴和打印平台板之间。
- 2. 旋转 Ultimaker 3 正面的按钮,直到它接触校准卡,然后进行微调,直到移动校准卡时感到轻微的摩擦/阻力。

加热床底部与底板顶部之间的距离应始终为 14 mm,以防止主动调平期间出错。

调平频率

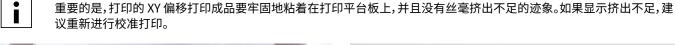
完成调平后, Ultimaker 3 将要求您选择想要多久调平一次打印平台板。选项如下:

- · 每天
- 毎周
- 每次启动后
- · 从不
- · 自动(频率由打印机的打印时长确定)

始终可以通过转到"系统 → 打印平台板 → 频率"更改调平频率。

XY 偏移校准

除了垂直偏移,还需要存储 X 和 Y 方向喷嘴之间的水平距离。Ultimaker 3 随附的 PrintCore 已经过校准,但当打印机检测到新组合时,必须先执行 XY 偏移校准。此校准只能做一次;然后,PrintCore 信息将存储在打印机上。正确的 XY 校准可确保两种颜色或材料很好地对齐。


校准时,需要一张XY校准纸,可以在配件箱中找到,或单击此处下载。

开始校准前,请确保2个PrintCore和材料均已安装。

开始校准:

- 1. 转到"系统 → 维护 → 校准 → 校准 XY 偏移"。
- 2. Ultimaker 3 此时将在打印平台板上打印一个网格结构。等待打印结束。
- 3. Ultimaker 3 冷却后,从打印机中取出玻璃板,将其放置在 XY 校准纸上。确保打印的网格与纸上的两个矩形完全重合。
- 4. 查找打印的 X 网格上对齐的线,看看哪些数字分别属于这些线。输入此数字,作为 Ultimaker 3 上的 X 偏移值。
- 5. 查找打印的 Y 网格上对齐的线,看看哪些数字分别属于这些线。输入此数字,作为 Ultimaker 3 上的 Y 偏移值。

提升开关校准

切换槽用于升降第二个 PrintCore。若要成功打印双挤出打印成品,切换功能良好运作非常重要。提升开关在 Ultimaker 3 装运时已经过校准,但还可以手动执行校准。

要执行切换槽校准:

- 1. 转到"系统→维护→校准→校准提升开关"。
- 2. 移动打印头侧面的提升开关,使其朝向您。
- 3. 移动打印头,使提升开关与切换槽契合。
- 4. 等待打印头移动到原位,然后测试提升开关。
- 5. 提升开关是否降低和升起了 PrintCore?如果是,按下"是"完成校准。如果没有,选择"否"再次执行校准。

6. 维护

为了让 Ultimaker 3 顺畅 运行,重要的是正确维护。本章介绍了最重要的维护建议。请仔细阅读这些信息,以使用 Ultimaker 3 实现最佳打印效果。

6.1 更新固件

Ultimaker 3 固件会定期发布新版本。为确保 Ultimaker 3 拥有最新功能,建议定期更新固件。更新可在 Ultimaker 3 上 (连接至网络时) 或通过 USB 完成。

在打印机上更新

要通过网络更新固件,请采用以下步骤:

- 1. 通过 Wi-Fi 或以太网将打印机连接至网络。
- 2. 转到"系统→维护→更新固件"。
- 3. 选择"稳定"版。

Ultimaker 3 此时将从网络获取最新固件并安装。这一步需要几分钟时间。

通过 USB 更新

在没有有效网络连接的情况下也可以更新固件,步骤如下:

1. 从 www.ultimaker.com/firmware 下载新版固件文件。 将该固件文件放入 U 盘。

下载后不要解压文件,而是直接将其放入 U 盘。

- 2. 将 U 盘插入 Ultimaker 3 上的 USB 端口。
- 3. 转到"系统→维护→更新固件"。
- 4. 如果 U 盘上有固件文件, Ultimaker 3 会检测到。选择文件, 开始固件更新。

6.2 材料存放和搬运

当您有多个材料线轴在用,或不用某种材料时,重要的是妥善存放。如果存放不当,可能会影响材料质量或加工性能。

要使材料保持最佳状态,重要的是保证它们:

- · 阴凉干燥
- · 避免阳光直射
- · 放在可重复密封的塑料袋中

PLA、尼龙、CPE、CPE+、PC、TPU 95A、PP 和 Breakaway 的最佳存放温度为 -20 至 +30°C。ABS 的建议存放温度为 15 至 25°C; PVA 为 0 至 30°C。此外,PVA、TPU 95A、PP 和 Breakaway 的建议相对湿度为低于 50%。如果这些材料暴露于湿度较高的环境中,材料的质量可能会受到影响。

可以用可重复密封的塑料袋存放材料,并放入随附的干燥剂(硅胶)。对于PVA,建议在打印后直接用可重复密封的塑料袋存放线轴,并放入随附的干燥剂,以尽量减少水分吸收。

6.3 维护计划

要使 Ultimaker 3 保持最佳状态, 我们建议执行以下维护计划, 以每年打印 1,500 小时为基准:

每个月	毎3个月	毎年
清洁打印机 润滑轴	检查轴隙 检查短皮带的张力 检查打印头前风扇中是否有残留物 检查硅胶喷嘴盖的质量 润滑 Z 电机导向螺丝 清洁 PrintCore	清洁进料装置并更换鲍登管

如果使用频率较高,我们建议对机器执行更频繁的维护操作,以确保最佳打印效果。

6.4 清洁打印机

为实现最佳打印效果,重要的是保持使用的 Ultimaker 3 清洁。因此,不建议在容易布满灰尘的房间使用 Ultimaker 3,并建议清除打印机中可能存在的零碎材料。此外,Ultimaker 3 中有些零件可能需要更经常清洁。

清洁玻璃板

完成打印作业后,玻璃板上可能会粘上太多胶。这种情况会导致打印表面不均匀。取下打印成品时也可能会降低胶层的粘着质量,因此建议定期清洁玻璃板并重新涂胶。

开始新打印之前,请务必检查玻璃板表面。采用以下步骤彻底清洁玻璃板,至少一个月一次。

请务必确保 Ultimaker 3 已关闭,打印平台板已冷却。

- 1. 手动将打印平台板放置到 Ultimaker 3 底部。
- 2. 打开前面的打印平台板夹具,向前滑动玻璃板,将其从打印机上取出。
- 3. 使用温水和海绵去除胶层。如有必要,还可以使用一些肥皂或清洁剂。
- 4. 用干布擦干玻璃板。
- 5. 将玻璃板放置到加热床上,警告贴标朝上。确保玻璃板卡入背面的打印平台板夹具,然后闭合前面的打印平台板夹具,将其固定。

打印平台板上升时,如果打印平台板夹具未闭合,可能会损坏 Ultimaker 3。

清洁喷嘴

使用 Ultimaker 3 时,材料可能会堵在喷嘴中。虽然这不会损坏打印机,但还是建议保持喷嘴清洁,以实现最佳打印效果。

开始新打印之前,请务必检查喷嘴。采用以下步骤去除喷嘴外部的塑料,至少一个月一次:

- 1. 在 Ultimaker 3 上, 导航至"材料/PrintCore → PrintCore 1 → 设置温度"。旋转刻度盘, 将温度设为 150°C。对 PrintCore 2 重复此步骤, 并确保该 PrintCore 已降低。
- 2. 等待外部的塑料变软。喷嘴加热后,小心地用镊子夹去材料。

清洁时,请勿触摸喷嘴并加倍小心,因为喷嘴会非常热。

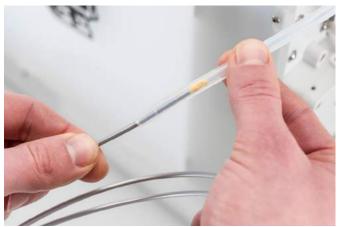
清洁进料装置和鲍登管

长时间打印后,或材料被磨碎时,进料装置中可能会堆积少量耗材碎料。这些碎料最终会进入鲍登管和 PrintCore,进而影响打印质量。

进料装置和鲍登管应该至少一个月清洁一次,或在出现耗材磨损问题后立即清洁。

清洁进料装置

- 1. 导航至"材料/PrintCore → 材料 [x] → 卸载"卸下材料。之后,关闭打印机。
- 2. 向进料装置内吹气,吹出耗材碎料。如有必要,可使用吹风机或压缩机。



清洁鲍登管

鲍登管中的碎料会妨碍耗材顺畅移动或混合颜色。若要清洁鲍登管,必须从打印机上将其拆下。

- 1. 导航至"材料/PrintCore → 材料 [x] → 卸载"卸下材料。之后,关闭打印机。
- 2. 将打印头放置在右前角处。
- 3. 用指甲抠下打印头和进料装置上管耦合夹头上的夹片。
- 4. 按压打印头的管耦合夹头,同时从打印头上向上拔出鲍登管。对进料装置重复这些步骤。
- 将第二根鲍登管固定在打印头上的电缆夹不必取下,可以将其留在原位。
- 5. 剪下一小块海绵或将一张纸巾揉成团。
- 6. 用一段耗材把它塞入鲍登管的进料端,一直推到管中穿过整根管。使用干净的海绵或纸巾对两根鲍登管分别执行相同的操作。
- 若要最有效地清洁鲍登管,请确保海绵或纸团在管内紧密贴合。请注意 如果太大,将很难推入。
- 7. 将管耦合夹头按压到进料装置中,并一直推入鲍登管,从而将鲍登管插入进料装置。用夹片固定住管。对其他鲍登管重复此步骤。
- 请注意第一根从打印机上完全拔出的鲍登管的朝向。一端被钻掉,更便于耗材进入;该端应该插入进料装置。
- 8. 将管耦合夹头按压到打印头中,并一直推入鲍登管,从而将鲍登管插入打印头。用夹片固定住管。对另一根鲍登管重复此步骤。

打印机内部

小块材料会在打印机内部聚集,例如装填块。用抹布或吸尘器清除打印机内部的这些材料。请特别注意 Z 限位开关周围的区域,因为此处堵塞会导致打印问题。

底板上留有较大的物体可能导致出错,因为它们会阻止打印平台板正确

6.5 轴润滑

为确保打印头和 Z 轴平台能始终顺畅移动,建议定期润滑轴。如果轴变干,从打印成品上可以看出来,因为表面会出现小棱纹。请至少一个月为轴涂抹一次润滑油。

Ultimaker 3 的配件箱中有一瓶机器润滑油。该润滑油专门用于润滑 Ultimaker 3 的轴。只能使用随附的机器润滑油,因为使用其他润滑油或 Magnalube 可能会影响轴的涂层,从而影响 Ultimaker 3 的性能。

X和Y轴

为 X 和 Y 轴以及两个打印头轴分别涂抹一小滴机器润滑油。手动移动打印头,使润滑油均匀分布。

请勿为轴涂抹太多润滑油,因为轴上的润滑油可能会滴到玻璃板上,从而影响粘着性。如果有油滴在玻璃上,在打印前务必彻底清洁干净。

Ζ轴

为各个 Z 轴涂抹一小滴机器润滑油。在 Ultimaker 菜单中,转到"系统 \rightarrow 打印平台板"。选择"升高",再选择"降低",上下移动打印平台板,以使润滑油均匀分布。

6.6 检查轴隙

四个 X 和 Y 轴通过滑轮锁定到位。但是,随着时间的推移,一个或多个滑轮会变得有点松,这样会影响其对齐。如果出现这种情况,X 和/或 Y 轴可能会出现轴隙,这会导致打印质量出现问题。

建议至少每三个月检查一次轴隙。

从右侧的 X 轴开始。将打印头放置在打印机后左角处,将其留在一边。用一只手抓住 Ultimaker 3 框架,另一只手紧握右侧的 X 轴。尝试前后移动轴;不要害怕过度用力。

对其他轴重复此步骤。确保每次都将打印头移到另一侧。

轴应该纹丝不动。如果有轴会动,可以听到滑轮碰撞框架的滴答声。此时,建议校准打印头。欲了解如何进行此操作的说明,请查阅 Ultimaker 网站。

6.7 检查短皮带的张力

短皮带维持正确的张力对确保良好的打印质量很重要。短皮带用于将 X 和 Y 电机的移动传递到打印头。如果皮带太松,打印头的移动可能会不精确。这会导致打印误差。

慢慢地,皮带可能越变越松。建议至少每三个月检查一次短皮带的张力。

拉拽两根短皮带以检查其张力。它们应该稍微有点回响,就像吉他弦一样。应该无法按压皮带本身。此外,两根皮带的张力应该相等。

若要恢复张力,请执行以下步骤:

- 1. 使用六角螺丝刀松开将 Y 电机固定到左侧板上的四颗螺栓,以松开 Y 电机。不要拆下螺栓,但电机应该能够上下滑动。
- 2. 用一只手紧紧按住电机。这样可确保短皮带保持最大张力。
- 3. 在按压电机的同时,按交叉形式拧紧 Y 电机的四颗螺栓。首先拧紧左上角的螺栓,然后是右下角,接下来是左下角,最后是右上角。这样可确保电机笔直固定。
- 4. 对固定到背板上的 X 电机执行上述步骤。之后,再次检查两根皮带的张力。

6.8 检查打印头前风扇中是否有残留物

前风扇用于在打印期间冷却 PrintCore。这有助于防止喷嘴向上喷射太远。

风扇从打印头前部吸入空气,并将其引导至 PrintCore。有时,在打印期间,气流会导致细长的耗材卡在风扇中。如果耗材在风扇中积聚,就可能阻碍风扇并使其无法转动。

若要检查前风扇,首先轻轻打开前风扇架。向前风扇吹气,看看是否能顺畅转动。如果完全不能动,或突然停转,请用几把镊子仔细清除前风扇中的任何障碍物。

在执行此检查前,请确保 PrintCore 已完全冷却,并且打印机已关闭。

如果在去除可看见的耗材残留物后,风扇仍然没有转动,则应该予以更换。

6.9 检查硅胶喷嘴盖的质量

硅胶盖用于为 PrintCore 遮住风扇的冷气流,这有助于 PrintCore 在打印时保持稳定的温度。硅胶盖还有助于在打印期间出现故障时防止材料回流到打印头。

由于喷嘴的热量,硅胶盖可能会慢慢磨损。建议至少每三个月检查一次硅胶盖的质量。

检查打印头底部,看看喷嘴穿过的孔洞是否还是圆的,硅胶盖是否还能形成良好的密封。还可以轻轻打开风扇架,检查硅胶盖的另一侧。

这些图片中,强烈建议更换左侧的硅胶盖,提议更换中间的硅胶盖。右侧的硅胶盖状况非常好,无需更换。有关如何更换硅胶盖的说明可在 Ultimaker 网站上找到。

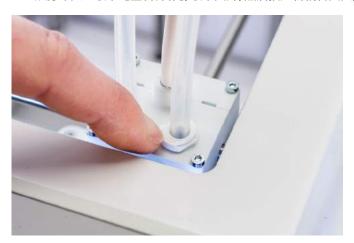
6.10 润滑 Z 电机的导向螺丝

导向螺丝连接至 Z 电机,用于控制 Z 轴平台的移动。若要确保 Z 轴平台顺畅移动,建议定期为导向螺丝涂抹 Magnalube。

随着时间的推移,可能需要重新涂抹 Magnalube,以使 Z 轴平台的移动保持一致和精确。Ultimaker 3 的配件箱中有一管 Magnalube。

- 1. 确保将打印平台板放置在 Ultimaker 3 底部。
- 2. 为 Z 电机的导向螺丝涂抹少量 Magnalube。
- 3. 在 Ultimaker 菜单中,转到"系统 → 打印平台板"。
- 4. 选择"升高",再选择"降低",上下移动打印平台板,以使 Magnalube 均匀分布。

请勿将 Magnalube 用于顺滑的轴,这会影响 Ultimaker 3 的正常运行。


6.11 清洁 PrintCore

应该定期维护 BB PrintCore,至少每三个月一次。使用 Ultimaker 清洁耗材是清洁和疏通 Ultimaker 3 上的 BB PrintCore 最有效的方式。Ultimaker 清洁耗材可以在打印机的配件箱中找到,但是如果没有可供使用的 Ultimaker 清洁耗材,可以使用 PLA 代替。

清洁耗材可以用于清洁 Ultimaker 3 上的 PrintCore, 方法是热拔和冷拔。热拔用于从 PrintCore 中去除大部分的污垢或碳化材料,在 PrintCore 堵塞时尤其需要。利用冷拔,可拉出剩余的小碎料,确保 PrintCore 完全干净。

准备

- 1. 转到"系统 → 维护 → PrintCore 清洁"以开始清洁程序。
- 打印头将移动到前右角处,以进行准备。
- 2. 选择要清洁的 PrintCore: PrintCore 1 或 PrintCore 2。
- 3. 选择清洁要使用的材料:Ultimaker 清洁耗材或 PLA 耗材。
- 4. 在菜单中继续之前,请仔细阅读这些页面上的说明,以便正确执行后续步骤。确认继续。
- 5. 等待打印机加热 PrintCore 并回抽耗材,直到在鲍登管中可以看见其末端。
- 如果没有回抽材料,可能材料被磨碎并卡在进料装置中。在这种情况下,请按照 <u>Ultimaker 网站</u>的故障排除部分所述手动取出材料。
- 6. 从打印头上取下鲍登管。首先,取下夹片,然后按压管耦合夹头,同时从打印头中向上拔出鲍登管。确认继续。

热拔

- 1. 将耗材 (Ultimaker 3 清洁耗材或 PLA) 插入打印头, 直到感觉有点阻力。
- 2. 用钳子夹住耗材,轻轻地向材料施加压力,持续 ±1 秒,以便它从喷嘴挤出,或直到无法再进一步推动。

必须使用钳子,以防材料断裂伤手。

切勿向材料施加太多压力。

3. 迅速用力地拔出 Ultimaker 3 清洁耗材。

- 4. 剪掉刚刚拔出的耗材尖端。
- 5. 检查耗材尖端的颜色和形状,将其与以下图片对比。确保尖端是干净的。

- 6. 重复此程序,直到清洁耗材尖端上再也看不到降解材料。耗材尖端应该像右侧的示例一样干净。
- 7. 耗材尖端干净后,用钳子手动通过 PrintCore 冲掉一些耗材,然后再次将其取出。确认继续。

冷拔

- 1. 用手将耗材插入打印头,直到感觉有点阻力。
- 2. 用钳子夹住耗材,轻轻地施加压力,以便挤出一些材料。确认继续。
- 3. 用钳子保持对耗材的压力,直到进度条完成。
- 4. 松开耗材,等待 PrintCore 冷却。
- 5. 用钳子夹住耗材,迅速用力地将其拔出。

- 6. 查看耗材尖端,看看是否像最右侧的示例一样干净且呈圆锥形。
- 如果耗材尖端不干净,请返回到热拔或冷拔以重复清洁步骤。

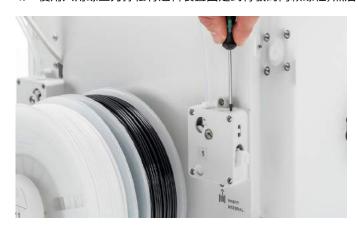
重新组装

- 1. 将鲍登管重新插入打印头中并固定夹片。进行此操作时应保持对鲍登管的压力。确认继续。
- 2. 等待 Ultimaker 3 完成清洁程序。

6.12 清洁进料装置并更换鲍登管

清洁进料装置

进料装置用于将耗材送入打印头。为确保准确挤出正确的材料量,进料装置齿轮能顺畅转动很重要。


长时间打印后,或材料被磨碎时,可能会在进料装置中留下少量耗材碎片。除了每个月将材料吹出来之外,还建议在每年打印后清洁进料装置内部。为此,必须从打印机上拆下进料装置。

i

还建议一年更换一次鲍登管。清洁进料装置时,请同时按照说明更换鲍登管。

对进料装置1和进料装置2都需要执行以下步骤:

- 1. 导航至"材料/PrintCore → 材料 [x] → 卸载"卸下材料。之后,关闭打印机。
- 2. 从鲍登管的进料端取下夹片,按压管耦合夹头,从进料装置中向上拔出鲍登管。
- 3. 通过转动进料装置顶部的螺栓,降低进料装置的张力,直到指示器指示最高标记。
- 4. 使用六角螺丝刀拧松将进料装置固定到背板的两颗螺栓,然后将进料装置向后滑离打印机。

- 5. 拆下将外壳固定在一起的四颗螺栓,以打开进料装置。将装置的两半放在自己面前,确保所有部件都在进料装置的后半部分。
- 6. 用干净的抹布或棉签擦去进料装置零件上的所有耗材碎料。用画刷或旧牙刷清洁滚花轮。还要清洁固定到进料装置电机上的小齿轮。
- 7. 为固定到进料装置电机上的齿轮涂抹少量 Magnalube。无需抹开;进料装置转动时会自动分散。
- 8. 将前半部分放在后半部分上以重新组装进料装置,确保所有零件都在原位。插入四颗螺栓,从左上角开始,按交叉形式将其拧紧。
- 9. 将进料装置放回到打印机中。
- 10. 将管耦合夹头按压到进料装置中,并一直推入鲍登管,从而将鲍登管插入进料装置。用夹片固定住管。
- 11. 通过转动进料装置顶部的螺栓,重置进料装置的张力,直到指示器指示中间标记。

更换鲍登管

鲍登管用于将耗材从进料装置引至打印头。

剪切不当或磨碎的耗材进入鲍登管可能会刮伤或损坏管内部。如果出现这种情况,耗材就不能再顺畅地进入打印头了。这可能会导致挤出不足或其他打印质量问题。

多次取下鲍登管后,管耦合夹头可能受到磨损。如果出现这种情况,管耦合夹头将不能再牢牢固定鲍登管。在这种情况下,鲍登管会在打印期间上下移动,从而会对打印质量造成负面影响。

如果鲍登管永久损坏,则需要予以更换。为保持最佳打印质量,建议每年更换一次鲍登管。

拆卸

- 1. 导航至"材料/PrintCore → 材料 [x] → 卸载"卸下材料。之后,关闭打印机。
- 2. 将打印头放置在右前角处。
- 3. 用指甲抠下打印头和进料装置上管耦合夹头上的夹片。
- 4. 按压打印头的管耦合夹头,同时从打印头上向上拔出鲍登管。对进料装置重复这些步骤。
- 5. 从挤出机 2 拆下鲍登管后(右侧),松开鲍登管上的四个电缆夹,以完全拆除。

重新组装

- 1. 拿出新的鲍登管,注意两端有所不同。被钻掉的一端应该插入进料装置。这样可使耗材更容易进入鲍登管。平的一端应该插入打印头。
- 2. 将管耦合夹头按压到进料装置中,并一直推入鲍登管,从而将鲍登管插入进料装置。用夹片固定住管。
- 3. 将管耦合夹头按压到打印头中,并一直推入鲍登管,从而将鲍登管插入打印头。用夹片固定住管。
- 4. 更换挤出机 2 上的鲍登管后(右侧),将电缆夹夹到鲍登管上。鲍登管上电缆夹之间的距离应该相等。

7. 故障排除

使用 Ultimaker 3 时,可能会发生一些打印机特定问题。如果遇到一个这样的问题,可在下页信息的帮助下自己动手解决问题。

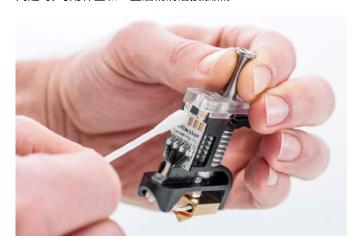
7.1 错误消息

下面是 Ultimaker 3 上可能会出现的最常见的错误消息列表。欲了解更多关于这些错误消息的故障排除信息,请转到 Ultimaker 网站的错误特定页面。

- · 发生未指明错误。重新启动打印机或转到 ultimaker.com/ER11。
- · PrintCore 最高温度错误 {display_hotend_nr}。转到 ultimaker.com/ER12。
- · PrintCore 最低温度错误 {display_hotend_nr}。转到 ultimaker.com/ER13。
- · 打印平台板传感器最高温度错误。转到 ultimaker.com/ER14。
- · PrintCore 加热器错误 {display_hotend_nr}。转到 ultimaker.com/ER15。
- · Z轴卡住或限位开关坏掉。转到 ultimaker.com/ER16。
- · X或Y轴卡住或限位开关坏掉。转到ultimaker.com/ER17。
- · 与打印头通信时出现错误。转到 ultimaker.com/ER18。
- · I2C 通信错误。转到 ultimaker.com/ER19。
- · 安全电路错误。转到 ultimaker.com/ER20。
- · 打印头内传感器错误。转到 ultimaker.com/ER21。
- · 主动调平校正失败。手动调平打印平台板或转到 ultimaker.com/ER22。
- · 指明打印温度错误。转到 ultimaker.com/ER23。
- · 指明打印平台板温度错误。转到 ultimaker.com/ER24。
- · 运动控制器更新失败。转到 ultimaker.com/ER25。
- · 此打印作业不适合此打印机。转到 ultimaker.com/ER26。

如果遇到此处未列出的错误消息,请转到 Ultimaker 网站了解更多信息。

7.2 PrintCore 故障排除


PrintCore 堵塞

如果至少有 10 分钟都没有材料从 PrintCore 流出, PrintCore 可能因某些污垢或碳化材料而被堵住了。在这种情况下, 应该通过热拔和冷拔方法清洁 PrintCore。

使用 Ultimaker 清洁耗材是清洁和疏通 Ultimaker 3 上的 PrintCore 最有效的方式。如果没有可供使用的 Ultimaker 清洁耗材,可以使用 PLA。请查阅第 6.11 章"清洁 PrintCore"了解详细说明。

PrintCore 未被识别

如果 PrintCore 未被 Ultimaker 3 识别,打印机将告知您。造成这种情况的主要原因是,PrintCore 背面芯片上的接触点脏污。出现此问题时,可用棉签和一些酒精清洁接触点。

7.3 打印质量问题

打印成品不粘在打印平台板上

遇到打印成品和打印平台板之间的粘着力问题时,可采取以下措施:

- · 确保采用的材料设置和粘着方法正确(参见第5.2章"材料")。
- · 重新手动校准打印平台板,然后执行主动调平(参见第5.8章"校准")。
- · 检查采用的 Ultimaker Cura 设置,并尝试打印其中一个默认 Ultimaker Cura 配置文件。

PVA 磨损

材料磨损的原因有几个,但 PVA 材料很特别,材料处理或存放不当就会导致磨损。PVA 应该在低湿度下打印和存放,这样才能避免打印时出现问题。我们建议存放湿度低于 50%,打印湿度低于 55%。还建议打印时环境温度低于 28℃。在标准的空调办公室内,该湿度和温度应该很容易达到。

PVA 被进料装置磨碎时,主要有三种原因。

- · **存放不当** PVA 是一种相对容易吸收水分的材料,因此正确存放(可重复密封的密封袋、湿度低于 50%)很重要。如果 PVA 吸收太多水分,会变得很软、可塑/易弯,有时甚至很粘。这会导致进料装置出现问题,因为可能无法再正确向前推进 PVA。
- · **鲍登管产生涂层** 鲍登管可能因错误的打印条件(主要是湿度过高)而在内部产生涂层。如果打印环境湿度太高(55%以上)、温度太高(28°C以上), PVA可能无法轻易通过鲍登管。出现这种情况的解决办法是清洁鲍登管并完全晾干。
- · PrintCore 堵塞 由于湿度过高, PVA 的质量会慢慢下降, 导致堵在 PrintCore 中。结果, 耗材无法再推进, 导致进料装置磨损。出现这种情况时, 应该按照第 6.11 章"清洁 PrintCore"中所述步骤清洁 PrintCore。

欲了解有关如何解决磨损问题的更多信息,请查阅此页。

挤出不足

在最简单的形式中,挤出不足出现在打印机无法供应正确材料量的情况下。Ultimaker 3 出现挤出不足时,可以看到缺少分层、分层非常薄,或分层上有不规则的小圆点和孔洞。

出现挤出不足有几个原因:

- · 使用劣质材料或材料设置错误
- · 进料装置张力设置错误
- · 鲍登管中出现摩擦
- · 进料装置或鲍登管中存在少量碎料
- · PrintCore 部分堵塞

当 Ultimaker 3 出现挤出不足时,建议查阅此页了解详细的故障排除说明。

卷翘

卷翘发生在 3D 打印期间材料收缩时,这会导致打印成品的各角向上翘起并与打印平台板脱离。打印塑料时,塑料会先稍微膨胀,但会随着慢慢冷却而收缩。如果材料过度收缩,就会导致打印成品从打印平台板上翘起。

如果打印成品卷翘,请务必执行以下操作:

- · 正确调平打印平台板(最好使用主动调平)
- · 在玻璃板上涂一层薄薄的胶
- · 使用正确的温度设置
- · 使用其中一个默认 Ultimaker Cura 配置文件

若要更详细地解决这个问题,请查阅 Ultimaker 网站。

